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1. Introduction

Transient countercurrent two-phase liquid–liquid flow is encountered in a number of engi-
neering applications. In the petroleum industry, for instance, mixtures of crude oil and water are
transported to the separation facilities in pipelines consisting of horizontal, uphill, and downhill
sections (the hilly terrain pipelines). Scheduled or emergency shutdowns of such pipelines result in
the phase separation and countercurrent flow. Free water separated from oil flows downwards
and accumulates in the bends joining the downhill sections with the uphill sections of the pipeline.
The oil displaced by free water flows upward until the system comes to rest. Transient counter-
current flow of two immiscible liquids also occurs in the pipe-type slug catchers used to store
liquids (condensate and free water) produced during pigging of wet-gas pipelines (Price and
Thomas, 1998).

Despite its significance, little attention has been paid to this type of multiphase flow. Masliyah
and Shook (1978) developed a numerical model for steady laminar countercurrent liquid–liquid
flow in an inclined circular tube and obtained an analytical solution for flow between two infinite
parallel plates. Zakharov et al. (2000) investigated steady laminar countercurrent vertical flow of
two immiscible liquids between parallel plates. To the best of the author�s knowledge, no study
has been previously performed to investigate transients in stratified countercurrent liquid–liquid
flow.

In the studies cited above the so-called rigorous (exact) approach (Wallis, 1982; Taitel, 1994) is
used. The local balance equations are solved assuming that the interface position is known
a priori. The analytical and numerical solutions based on such an approach predict velocity
profiles and shear stress distribution in each phase. Transient two-phase flows in most practical
engineering applications have an extremely complex shape of the interfaces even if the flow
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pattern is stratified flow. Predicting the velocity field in each phase that also requires tracking the
deformable moving interfaces is a very difficult task (Wallis, 1982; Taitel, 1994) because over-
whelming difficulties arise in solving local balance equations (Ishii, 1975). Moreover, short waves
(Alkaya et al., 2000) and mixing (Trallero, 1995) at the interface may occur during simultaneous
flow of two immiscible liquids in a pipe. The rigorous approach can hardly be applied to such flow
patterns. In addition, it should be noted that so detailed description of the flow (2-D or 3-D
models) is rarely needed in the practice: an accurate prediction of the average phase velocities,
water holdup profiles and the time required to separate the phases is much more important.

In this work, a two-fluid model for transient zero net liquid–liquid flow is presented. A new
formulation of the combined momentum balance equation is proposed to account for the water
holdup gradient effect. The model predictions are compared with full-scale experimental data for
countercurrent oil–water flow. Two mechanisms causing countercurrent liquid–liquid flow in
pipes are examined: a non-uniform holdup distribution along the length of the pipeline and the
pipe inclination.
2. Problem statement

Two problems are considered in present study. The first problem is schematically shown in
Fig. 1a. A horizontal pipeline of diameter D and length L is divided by a valve into two equal
sections. Both sections are filled with two immiscible liquids (liquid phase a and b). The density of
phase b is greater than that of phase a. The phases are completely separated in both pipeline
sections. Initially (t ¼ 0), the volume fraction of phase b (in situ holdup) in the first section, ab1, is
greater than that in the second section, ab2, and the valve is closed. At t > 0, the valve is opened.
This study investigates the response of the system on the valve opening.
Fig. 1. Countercurrent flow of two immiscible liquids in (a) horizontal pipeline and (b) inclined pipeline.
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In the second problem the pipeline is slightly inclined, as shown in Fig. 1b. Two immiscible
liquids (a and b) flow simultaneously through the pipeline. Initially, the phases are uniformly
distributed along the pipeline length. At t ¼ 0, the pipeline is shutdown by closing simultaneously
the valves installed at the inlet and the outlet of the line (they are not shown in Fig. 1b). Phase
redistribution in the system after shutdown of the pipeline is investigated in this work.

2.1. Governing equations

For an isothermal, incompressible, stratified flow of two immiscible liquids, the basic averaged
equations of the two-fluid model can be written as follows:

Mass conservation equation for phase b
o

ot
ab þ

o

ox
ðabUbÞ ¼ 0; ð1Þ
where Ub is the velocity of phase b.
Mass conservation equation for the mixture in an integral form
Uaaa þ Ubab ¼ Um; ð2Þ
where
aa þ ab ¼ 1; ð3Þ
where Ua and aa are the velocity and the volume fraction of phase a, respectively, Um is the
mixture velocity.

After shutdown of the pipeline the overall flowrate equals zero, thus Eq. (2) reduces to
Uaaa þ Ubab ¼ 0: ð4Þ

Combined momentum equation (Brauner and Maron, 1992)
qb
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þ ðqb � qaÞg sinb; ð6Þ
where qa and qb are the densities of the phases a and b, respectively; x is the axial coordinate; hb is
the height of the interface; sa and sb are the wall shear stresses for the phases a and b, respectively;
si is the interfacial shear stress; Sa and Sb are the perimeters wetted by the phases a and b, re-
spectively; Si the perimeter of the interface; g is the gravitational acceleration; pia and pib are
pressures at the interface at the phases a and b, respectively; and A is the pipe cross-section area.

Phase redistribution in long pipelines (L � D) is a slow transient process. In slow transients, the
gravity and friction forces are dominant, and therefore the inertia effects can be neglected (Taitel
and Barnea, 1997). A posteriori estimation of terms in Eq. (5) can also be made to show that this
assumption is justified in both cases considered in this study. Thus, the combined momentum
equation, Eq. (5), can be written as
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The examination of Eq. (7) reveals that phase redistribution can be caused either by the pipe
inclination (b 6¼ 0) or by a non-uniform holdup distribution along the pipeline length
(ohb=ox 6¼ 0). The direction of phase motion in each particular case is determined by the sum of
these two effects.

It is interesting to note that when the system comes to rest (sa; sb; si ! 0) the momentum
equation takes the following form:
sin b� cos b
ohb
ox

¼ 0 ð8Þ
or
ohb
ox

¼ tanb: ð9Þ
According to Eq. (9) the interface is always parallel to the earth surface when both liquids are at
rest. This is an obvious condition for mechanical (static) equilibrium in the system.
2.2. Constitutive relationships

In the present work slow transients in stratified two-phase liquid–liquid flow are investigated,
therefore, to evaluate shear stress terms in the momentum equation, the quasi-steady closure
relations proposed by Brauner and Maron (1992) were used.

The wall shear stress acting on each phase is expressed in terms of the local velocity of the phase
and corresponding friction factor:
sk ¼ fk
qkUkjUkj

2
; k ¼ a;b; ð10Þ
where fk is the friction factor for phase k.
The friction factors fa and fb in Eq. (10) are evaluated using the adjustable definitions of the

equivalent hydraulic diameters (Brauner and Maron, 1992).
The interfacial stress is predicted using the Brauner–Maron correlation for interfacial friction
si ¼ fi
qðUa � UbÞjUa � Ubj

2
; ð11Þ
where
q ¼ qa and fi ¼ Bfa for jUajP jUbj;
q ¼ qb and fi ¼ Bfb for jUaj < jUbj:

ð12Þ
B in Eq. (12) is the so-called ‘‘waviness factor’’ (Brauner and Maron, 1992) and fi is the interfacial
friction factor. B accounts for the effect of interfacial waviness on the interfacial shear stress. For
smooth stratified flow B � 1, while for wavy stratified or stratified with mixing at the interface
flow patterns B > 1.
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2.3. Initial and boundary conditions

In the first problem, the initial distribution of volume fraction of phase b is uniform in each
pipeline section, Fig. 1:

at t ¼ 0, for 0 < x < L=2,
abðxÞ ¼ ab1; ð13Þ
and at t ¼ 0, for L=2 < x < L,
abðxÞ ¼ ab2: ð14Þ
In the second problem, Fig. 2:

at t ¼ 0, for 0 < x < L,
abðxÞ ¼ ab0: ð15Þ
Both ends of the pipeline are closed during the transients simulated. Thus, the boundary
conditions for both cases are:

at x ¼ 0 and x ¼ L, for t > 0,
Ub ¼ 0: ð16Þ
A detailed description of the numerical method used to solve the governing equations, Eqs. (1),
(2) and (7), can be found in a previous article (Fairuzov, 2000). The mesh consisted of 100 cells
was used in all the numerical simulation performed.
3. Two-fluid model validation

Eq. (1) is a hyperbolic equation that describes the propagation of phase b holdup distur-
bances in the pipeline. The studies by Lahey (1992) and by Asheim and Grodal (1998) have shown
that void and holdup waves (density waves) in two-phase flow mostly depend on the closure
conditions used in two-fluid models. In the present study the empirical correlations for liquid–
liquid flow proposed by Brauner and Maron (1992) are used to estimate the wall and interfa-
cial shear stresses. Full-scale experiments were conducted to confirm that these correlations
can be used for modeling oil–water flow in large diameter pipelines. A detailed description of
the pipeline and equipment used in the experimental study is given in a previous article (Fairuzov
et al., 2000).

Table 1 shows a comparison of predicted dimensionless water layer heights with measured
values for different operating conditions of the pipeline. A good agreement between the model and
the experiment is observed, the predicted water layer height values are within the uncertainty
range of the measured values.



Table 1

Comparison of predicted values of water-layer height with measurements

Um (m/s) kw hw=D

measured predicted

0.570 0.338 0.388� 0.170 0.389

0.668 0.485 0.388� 0.170 0.481

1.271 0.026 0.103� 0.034 0.091

1.116 0.030 0.103� 0.034 0.100

0.610 0.051 0.103� 0.034 0.136

1.411 0.049 0.103� 0.034 0.132

0.732 0.263 0.388� 0.170 0.335

1.103 0.088 0.178� 0.040 0.184

0.524 0.130 0.388� 0.170 0.228
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4. Countercurrent flow caused by non-uniform phase distribution

In this section, numerical simulations of phase distribution in the pipeline shown in Fig. 1a are
presented (problem 1). The length of the pipeline is 500 m and its diameter is 0.3048 m (12 in.).
The less dense phase (the phase a) is oil (qa ¼ 850 kg/m3, la ¼ 5 cp) and the more dense phase (the
phase b) is water (qb ¼ 1000 kg/m3, lb ¼ 1 cp). Initially, the water volume fraction in the first
section is 0:4, while in the second section ab2 ¼ 0:1.

The opening of the valve results in the formation of long density waves (k � D), which
propagate in both pipeline sections (Fig. 2). The water-layer height decreases in the first section
and increases in the second one. Phases move in opposite directions and all the flow parameters
essentially vary with time (Figs. 3 and 4), transient countercurrent flow occurs. The maximum
phase velocities are reached at t ¼ 0 s in the valve where ohb=ox ! 1 and theoretically
Ua;Ub ! 1 (see Eq. (7)). However, in reality, the friction effects limit the flow acceleration in the
valve during its opening and the maximum velocities of phases should be finite. The peak values of
Fig. 2. Phase redistribution caused by a non-uniform water holdup distribution in the horizontal pipeline.



Fig. 3. Transient profiles of phase velocities in the horizontal pipeline.

Fig. 4. Holdup wave speeds in the horizontal pipeline.
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the phase velocities depend on the design of the valve. A model describing the dynamics of valve
opening can be incorporated into the present model to predict the maximum phase velocities at
t ¼ 0. The valve geometry has an effect on the flow behavior near the valve only during a very
short period of time (in the considered case, during first few seconds). Modeling of the valve
dynamics is generally of no real practical significance because the time period during which the
valve is opened is short as compared to the total time of the fluid transient. In the present study, a
final value of the holdup derivative was specified ðohb=ox � Dhb=DxÞ to evaluate phase velocities
in the valve at the initial moment of time.

As can be seen in Figs. 2 and 3 the water holdup perturbations propagate faster in the first
section of the pipeline: at t ¼ 50 s the phase velocity profiles are not symmetric with respect to the
valve location ðX ¼ 1=2LÞ. This phenomenon may be explained based on a non-linear analysis of
the water holdup wave propagation. Eq. (1) may be rewritten in the following form:



Fig. 5. Transient water superficial velocity profiles in the horizontal pipeline.
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o

ot
ab þ

oUbs

oab

� �
Um

oab
ox

¼ 0; ð17Þ
where Ubs is the superficial velocity of phase b. The term in parentheses in Eq. (17),
cs ¼ ðoUbs=oabÞUm

, is the non-linear holdup wave speed (celerity). The water superficial velocity
can be expressed as a function of water holdup, Ubs ¼ f ðab;UmÞ; with the aid of Eqs. (4) and (7).
Thus, to estimate cs a finite-difference analog for the derivative of Ubs with respect ab can be used.
The predicted holdup wave speed profiles are shown in Fig. 4. Initially, Cs1 > Cs2 and therefore
water holdup disturbances propagate at a higher speed in the first section of the pipeline. It is
interesting to note that the local water holdup wave celerities are significantly greater than the
local water velocities (Figs. 3 and 4). This indicates that holdup perturbations are traveling along
the pipeline much faster than fluid particles in the oil and water. A complex transient behavior of
cs observed in Fig. 4 is attributed to a highly non-linear dependence of the water phase velocity on
the water holdup.

After the waves have reached the ends of the pipeline the rate of phase redistribution decreases
(t ¼ 500 s, Fig. 5). The wave fronts become smooth. As a result, the oil and water flows slow down
(Fig. 3). At t ¼ 8000 s the interface is flat. This indicates that the system is in an equilibrium state.
It is important to note that the inventory (total volume) of each liquid remains constant during the
transient. This condition is strictly fulfilled in all numerical simulations presented in this paper.
5. Countercurrent flow caused by pipe inclination

In the second problem considered in the present article (Fig. 1b) the initial water holdup is
constant along the whole length of the line, but the pipeline is slightly inclined downward (the
inclination angle b ¼ 0:1�). The initial water holdup is 0.1. All other conditions (pipeline geometry
and fluid properties) are the same as in the first example.
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The predicted results shown in Figs. 6–8. As the initial water holdup profile is uniform, the
phase velocity profiles established immediately after pipeline shutdown are also uniform (Fig. 6,
t ¼ 0 s). A region of quasi-steady flow (0:25 < X=L < 0:9) is observed at t ¼ 500 s. As oab=oX ¼ 0
in this region, oab=ot equals zero here too according to Eq. (17). At the upper pipeline end the oil
phase flowing upward displaces the water phase and a water holdup wave is formed. The holdup
wave produced at the upper end moves towards the lower end (Fig. 7). At the lower end the water
holdup increases rapidly and the water holdup profile becomes linear soon after the shutdown of
the pipeline: a region with flat interface is clearly seen at t ¼ 500 s and 0:9 < X=L < 1. The for-
mation of the region with flat interface may be attributed to a significant increase in the speed of
holdup wave caused by water accumulation at the lower end (Fig. 8). In the upper part of the
pipeline, the speed of wave propagation decreases and becomes very small (<0.03 m/s) at t ¼ 3000 s
Fig. 6. Transient profiles of phase velocities in the inclined pipeline.

Fig. 7. Phase redistribution in the inclined pipeline.



Fig. 8. Holdup wave speeds in the inclined pipeline.
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while in the lower part of the pipeline the holdup wave celerities are much larger. Due to this the
holdup perturbations generated in the upper part of the pipeline propagate at a significantly higher
speed when they reach the pipeline section in which the water accumulation occurs. Thus, the
interface at this region is flat (without waves). The shift of the linear holdup profile towards the
upper pipeline end, observed in Fig. 7, represents a quasi-steady displacement of the oil phase by
the water phase. At t¼ 10,000 s the phase redistribution process is almost over. The interface is
parallel to the earth surface (Fig. 7). A small amount of water remains in the upper section of the
pipeline. This water is flowing downward at a very low velocity (Fig. 6). It takes much time (more
than one day in the considered case) to achieve complete phase segregation. In the practice,
however, some amount of water always remains in the inclined pipeline sections due to local elastic
deformations of the pipe.

It is interesting to note that the holdup wave speed at the lower end of the pipe does not equal
zero when t ! 1 (in the considered case, the water holdup and wave speed profiles almost do not
change after 10,000 s, Figs. 7 and 8). The water holdup gradient, oab=ox, also does not equal to
zero at this location (Fig. 7) at t ! 1, because b 6¼ 0 (see Eq. (9)). According to Eq. (17) the flow
is unsteady at the lower end of the pipe, because oab=ot 6¼ 0 until the system comes to rest. Adding
(taking away) water to (from) this part of the pipe will always result in a change of the interface
position. The model developed describes correctly this phenomenon.
6. Conclusions

Transient gravity-driven countercurrent flow of two immiscible liquids in horizontal and
slightly inclined pipelines was studied numerically in this work. A one-dimensional two-fluid
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model of the two-phase flow was used to perform numerical simulations of the flow. A new
formulation of the combined momentum equation for modeling gravity-driven two-phase flows in
horizontal and slightly inclined pipes was proposed. It was shown that such a type of two-phase
flow can be produced either by the pipe inclination or by a non-uniform phase distribution along
the length of the pipeline. These two mechanisms were investigated separately. It was found that
phase redistribution in liquid–liquid systems is controlled by the propagation of holdup waves.
The wave propagation speed has a significant effect on the transient water holdup profiles. The
final distribution of phases in the pipeline is determined by the pipeline geometry and the in-
ventory of each liquid. This study may contribute towards a better understanding of transient
two-phase liquid–liquid flow in pipes.
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